## A non-life-like cellular automaton

Today I give a first example of a *non*-life-like cellular automaton. It is a very similar beast, though: it still uses a rectangular grid with the toroidal topology, two possible states per cell, and the Moore neighbourhood, and the new state of a cell still is a function of the current states of the cell and its neighbours. However, in this automaton, it is not sufficient to know only the *number* of living neighbours to determine the new state of a cell.

To be specific, this automaton is very similar to B2/S23, but a dead cell comes to life iff it has precisely two live *von Neumann* neighbours; the survival condition still uses the Moore neighbourhood. Hence, in a sense, this automaton mixes the von Neumann and Moore neighbourhoods. Technically, though, it uses the entire Moore neighbourhood, but the birth condition cares about *which* neighbours are alive.

Below the ashes of this automaton (formed from a 50% random soup) is shown. It does produce a number of neat period-2, period-3, and period-4 oscillators.

Tomorrow I will give a much more interesting example of a non-life-like automaton.